

LESOTHO HIGHLANDS WATER PROJECT

# HYDROPOWER DEVELOPMENT FOR LESOTHO LHWP PHASE II FEASIBILITY STUDIES

Mark Matchett LHDA 3<sup>rd</sup> April 2019

#### **COINCIDENCE OF NEEDS**

- RSA water scarcity growing water demand industry and household needs
- Lesotho abundant highland waters economic development through external revenue & reduce energy imports







LHWP – PHASE I





# **LESOTHO ENERGY POLICY**

- Develop sustainable electricity generation resources
- Develop robust energy framework
  - regulation of IPPs
  - renewable energy resources
  - competitive market operations
- Improve energy security (reduce imports)





# LESOTHO GENERATION LANDSCAPE

- National maximum demand = 150 MW (2018)
- Installed generation capacity = 72 MW 'Muela Power Station (LHDA)
- Shortfall imports from South Africa and Mozambique
- Potential sustainable options:
  - Solar 20 MW (Private investor)
  - Wind (Department of Energy)
  - Hydropower (LHWP II further feasibility studies)



# LHWP II Further Feasibility Studies



- Kobong Pumped Storage:
  - 1200 MW technically feasible
  - Bulk power for export 1000 MW
  - Balance for Lesotho consumption
  - Project deferred unfavourable market study results



- Conventional Hydropower
  - LHWP installations utilisation of Environmental Flow Releases
  - Greenfields
  - Energy independence
  - Screening of potential sites





#### SCREENING STUDY

#### • 53 sites - Site selection criteria:

- Engineering
  - Hydrology
  - Access
  - Installed capacity
  - Site geology
  - Power transmission requirements
- Environmental and Social aspects
- Project Economy
- Type of generation i.e. peaking, base-load, mid-merit etc.
- Energy generation capability







#### **SCREENING STUDY**

- 3 sites identified
- Geotechnical investigations
- Studies at the final phase

#### BANKABLE FEASIBILITY



## **OXBOW SITE**



- 90.5 MW
- 92m CFRD
- Pelton turbines
- 4 hours/day peaking
- 187 GWh/Annum



# **SENQU B SITE**

- 82 MW
- 107m CFRD
- Vertical Francis machines
- 7 hours/day peaking
- 129 GWh/Annum



# **SENQU D SITE**



- 30 MW
- 72m RCC dam
- Vertical Francis machines
- 16 hours/day baseload
- 186 GWh/Annum



### **PROGRESS TO DATE**

- ESIA project briefs completed
- Transmission network
- Geotechnical investigations
- Engineering studies advanced
- Legal and regulatory framework in progress
- Project financing requirements/development options analysis ongoing
- Construction completion 2025







# THANK YOU